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Ordered arrays of cylinders, known as rod packings, are now widely used in

descriptions of crystalline structures. These are generalized to include crystal-

lographic packed arrays of filaments with circular cross sections, including

curvilinear cylinders whose central axes are generic helices. A suite of the

simplest such general rod packings is constructed by projecting line patterns in

the hyperbolic plane (H2) onto cubic genus-3 triply periodic minimal surfaces in

Euclidean space (E3): the primitive, diamond and gyroid surfaces. The simplest

designs correspond to ‘classical’ rod packings containing conventional

cylindrical filaments. More complex packings contain three-dimensional arrays

of mutually entangled filaments that can be infinitely extended or finite loops

forming three-dimensional weavings. The concept of a canonical ‘ideal’

embedding of these weavings is introduced, generalized from that of knot

embeddings and found algorithmically by tightening the weaving to minimize

the filament length to volume ratio. The tightening algorithm builds on the

SONO algorithm for finding ideal conformations of knots. Three distinct classes

of weavings are described.

1. Introduction

Rod packings are mutually touching (i.e. packed) but non-

intersecting crystalline arrays of straight cylinders in E
3

(O’Keeffe & Hyde, 1996). These include ‘invariant rod

packings’1 (Rosi et al., 2005). Since the earliest work on rod

packings, a number of important patterns have been detected

in the solid state (O’Keeffe & Andersson, 1977; O’Keeffe,

1992) including the A15 or �-tungsten (�-W) packing and

a related packing of slightly lower density and symmetry, the

�-Mn packing. More recently, O’Keeffe and colleagues have

provided a systematic technique for enumerating conventional

rod packings and they have come up with a number of new

examples (O’Keeffe et al., 2001, 2002; Rosi et al., 2005).

In the course of our own investigations of spatial patterns,

we have found a novel route to many of these rod packings,

involving projections into E
3 of non-intersecting geodesics

from the two-dimensional hyperbolic plane (H2). These

packings of non-intersecting geodesics are closely related both

to standard tilings (Ramsden et al., 2009) and free tilings

(Evans et al., 2013) ofH2. This approach also yields many more

complex arrays of curvilinear rods that wind through space

forming generic helices. These arrays share many of the

features of conventional rod packings. Our generalized rod

packings are constructed from two-dimensional tilings of

hyperbolic space (H2) and signal a further break from recti-

linear geometries. The approach shares many of the techni-

ques described in detail in a companion paper (Evans et al.,

2013) and elsewhere (Ramsden et al., 2009; Evans & Hyde,

2011; Castle et al., 2011, 2012).

The admission of curvilinear rods leads to the following

possibilities. First, the rods can close up on themselves,

forming finite loops rather than infinitely extended compo-

nents. Our approach allows the catenation of those loops to be

varied, forming, for example, ‘chainmail’ structures. Second,

the packings can contain complex entanglements of the fila-

ments. It is intuitively clear that entanglement can be an

essential contributor to the material properties of the packing,

since mutual winding of adjacent filaments can dramatically

alter both the bulk modulus and Poisson’s ratio of a structure.

2. Weavings in E3

We construct three-dimensional crystalline arrays of curvi-

linear space curves (or filaments), called weavings. The

weavings discussed here emerge from two-dimensional

geodesic arrays on the simplest cubic TPMSs (triply periodic

minimal surfaces), namely the now well known P (primitive),

D (diamond) and G (or gyroid) (Fogden & Hyde, 1992).

Systematic enumeration of suitable two-dimensional arrays

1 An invariant rod packing is composed of non-overlapping rods (cylinders)
which correspond to invariant line positions of the space groups, so that the
rods lie along the directions of non-intersecting symmetry axes (O’Keeffe et
al., 2001; Rosi et al., 2005).
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on the TPMSs, using an extension of Delaney–Dress tiling

theory to so-called ‘free tilings’, allows us to catalogue and

describe weavings as described below. Generalized rod

packings are the set of mutually tangential canal surfaces of

the filaments, formed by the envelope of spheres centred on

the filament with both curvature and torsion (Hilbert &

Cohn-Vossen, 1952), and we retain the original meaning of

the term ‘rod packing’ to describe arrays of straight cylinders

only.

The construction proceeds by decorating tiles of H2 with

line segments of the hyperbolic pattern, then mapping the

decorated tile to the TPMS, giving a (generally curved) edge

segment wrapped on the TPMS. The technique employs

aspects of group theory, topology and hyperbolic geometry. A

detailed account of the technique and the enumeration

process for conventional tilings has been given elsewhere

(Ramsden et al., 2009; Robins et al., 2004). Those patterns are

built from tessellations of H2 by (simply connected) tiles of

finite area. These tiles map to closed cycles on the TPMS and

conventional one-component nets in E
3 (Ramsden et al.,

2009).

Free tilings result from tessellations by (simply connected)

tiles whose areas and edge lengths are unbounded. In the

companion paper to this one (Evans et al., 2013), we intro-

duced free ‘ribbon tilings’ that are tessellations of E2 or H2 by

infinite strip-like tiles. The forms of infinite tiles can be most

easily classified from their associated ‘medial axes’, defined as

the centres of discs (whose diameter is equal to the tile width)

whose union describes the tiles. The medial axes of ribbon tiles

are unbranched geodesics; medial axes of branched-ribbon

tiles are nets, or branched geodesics.

Branched-ribbon tilings emerged from an earlier study of

tree-like graphs in the hyperbolic plane (Hyde & Oguey,

2000). In that work, we noticed that the convex hulls of the

trees form arrays of (hyper-)parallel geodesics and these can

be considered as edges of symmetric tessellations of H2. In

contrast to ribbon tilings, these tessellations of H2 have no

counterpart in E2: each tile is bounded by an infinite number

of hyperparallel edges, yet is vertex-free. The medial axes of

these branched-ribbon tiles coincide with the hyperbolic trees

[that form edges of ribbon tilings discussed in the companion

paper (Evans et al., 2013)]. Branched-ribbon tilings are

therefore closely related to ribbon tilings. (Note, however, that

the width of branched-ribbon tiles varies. Their medial axes

are defined by centres of ‘maximal’ discs, that are wedged

between tile edges. The discs are large enough that any larger

disc necessarily includes some points outside the tile.)

Here we analyse the simplest members of these branched-

ribbon tilings, namely the regular examples, that, like Platonic

polyhedra, have symmetrically identical edges and faces. In

the language of tiling theory, these (vertex-free) patterns are

edge- and face-1 transitive in H2 (and on the TPMS). The tile

edges (which are geodesics in H2) map to one-dimensional

spatial curves in E3. An infinite variety of regular branched-

ribbon tilings is possible, whose edges map to E3 to form a

variety of crystalline arrays of identical curvilinear forms,

defining the filaments of the weaving.

2.1. A taxonomy of weavings

These branched-ribbon tilings project onto the TPMS to

form two distinct topologies. Generic examples contain infi-

nite curvilinear lines, resulting in weavings made up of infinite

filaments. In some cases, the filaments form finite closed loops

and the weaving degenerates to a periodic array of catenated

loops, built of links (Cromwell, 2004). We include a brief

discussion of one such example, separately.

We have found three distinct classes of weavings, distin-

guished by their behaviour on straightening the curvilinear

filaments in three-dimensional space, E3 (Evans & Hyde,

2011). Define a filament axis as the straight line that minimizes

the sum of the (Euclidean) distances from points on the fila-

ment to the rectilinear axis. For example, the axis of an ideal

helical filament is coincident with the central screw axis of the

helix. A continuous motion from the original helix to its fila-

ment axis is therefore akin to straightening a helix along its

central axis. In general, our filaments are not ideal helices,

since their specific form depends on the spatial trajectory of

the filament on the TPMS. However, the filaments are by

construction translationally periodic (cf. Evans et al., 2013);

therefore, their axes are necessarily parallel to their vector of

translational periodicity. Our weaving taxonomy depends on

the behaviour of the weaving as the filaments morph from

their initial curvilinear filament geometry to the final state,

where all filaments coincide with their rectified filament axes.

We classify weavings according to the changes (if any) of

filament entanglements during this process.

The notion of entanglement is borrowed, somewhat loosely,

from knot theory. Distinct knots cannot be interconverted

without edges passing through each other. Conversely,

equivalent knots can be interconverted without these

‘phantom moves’ and mappings of their complementary

volumes are ambient isotopic (Cromwell, 2004). Similarly,

equivalent entanglements of a net are related by an ambient

isotopy of their complementary volumes; these are called

equivalent isotopes. By analogy, generalized rod packings are

labelled as equivalent isotopes if they can be interconverted

without phantom moves. Given a generalized rod packing, we

define its ‘untangled’ isotope to be that formed by rods

centred on the filament axes of the initial weaving. (We clarify

that for special cases where the rods intersect below.) Here we

avoid subtle questions of ambient isotopy associated with rod

packings and analyse the possible interconversions of rod

packings via specific transformations only (rectification from

curvilinear to straight rods and tightening, described below). If

phantom moves are present during rectification, the initial and

final packings are distinct isotopes, with distinct entangle-

ments. In that case, the initial weaving is tangled.

The simplest class of weaving (‘class I’) is untangled. The

filaments can be rectified from their (generically) curvilinear

filament geometry – inherited from the edges on the TPMS –

to form straight filaments that coincide with their filament

axes, without filaments sharing common points in space at any

stage during this rectification process. The generalized rod

packing formed from the weaving is therefore an equivalent
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isotope to the rectilinear (untangled) rod packing, so it too is

necessarily untangled. Untangled weavings include conven-

tional rod packings, both cubic and anisotropic invariant rod

packings (Rosi et al., 2005; O’Keeffe et al., 2001). In addition,

this class includes other invariant rod packings of various

symmetries and generalized rod packings, with curvilinear

rods.

A second class (‘II’) is relevant to weavings where the

rectification of all filaments to their straight filament axes

results in intersections. In those cases, the untangled state is

not uniquely defined, as the straight filaments form a net

whose vertices are common to more than one filament. The

intersection can be removed by two possible perturbations at

each ‘vertex’: lifting one filament to pass over the other, or

under. Here we define the untangled weaving to be the infinite

family of cases formed by any combination of those moves.

(These intersections are neither tangled nor untangled, yet

share features of both states.) If the initial curvilinear weaving

can be ‘rectified’ into any one of those untangled embeddings

without phantom moves, it is itself untangled and is a class II

weaving. This implies that the weaving can be transformed

from its initial state to (intersecting) straight filaments aligned

with the filament axes without edges passing through each

other and reversing edge crossings; however, edges just touch

in their final rectified configuration.

The third class (‘III’) collects weavings whose filaments are

sufficiently tangled to impede each other from rectification

along their filament axes without filaments passing through

each other, changing the entanglement of the weaving. Here

we assume the fully rectified rod packing is not intersecting.

We use the untangled isotope to help describe the original

weaving, but emphasize that they are not equivalent under

ambient isotopy. Weavings in this class are tangled versions of

their rectified rod packings.

We assign names to weavings as follows. Untangled weav-

ings in class I are given the name of their associated rectified

rod packing. These are often among the set of 14 invariant rod

packings enumerated in Rosi et al. (2005), in which case we use

the names derived from a related lattice complex of the space

group from which they are constructed. These are �þ, ��, �þ,

�, �þ, ��, where the þ or � superscript denotes one enan-

tiomer of the packing and the � exponent the intergrowth of

both þ and � enantiomers (O’Keeffe et al., 2001). The other

eight invariant rod packings from this enumeration are iden-

tified by their structure number (#1–#8), as given in Rosi et al.

(2005). Where the weavings are related to invariant rod

packings of other symmetry, they are given a label ‘Rod (tetr.)’

which reflects that they are related to a rod packing with

tetragonal space-group symmetry, or ‘Rod (tri.)’ where they

have trigonal space-group symmetry.

Class II weavings, whose filaments (just) intersect on

straightening, are labelled ‘Intersect (net)’ where net denotes

the three-letter code for the net formed by the intersecting

filaments, as listed in the RCSR database (O’Keeffe et al.,

2008).

Class III ‘tangled’ weavings are named according to the

associated untangled rod packing corresponding to the

arrangement of filament axes (as per type I weavings). This

rod-packing label is prepended by the term ‘tangled’ to indi-

cate that it is not ambient isotopic to the rod packing specified.

Lastly, we name the examples whose filaments form finite

closed loops as ‘loops’.

2.2. Ideal embeddings

General weavings composed of curvilinear filaments share

many features with knots. Standard rod packings have a

unique geometry or embedding in E3, whereas generalized rod

packings do not, since the curvilinear filament geometry can

usually vary without changing the entanglement of the asso-

ciated generalized rod packing. Like knots, isotopes are flex-

ible. It is therefore helpful to describe a canonical embedding

of each isotope. The route that we adopt here builds on the

concept of a ‘tight embedding’ from knot theory that often –

though not always – affords a unique and therefore canonical

embedding for conventional knots and links (Stasiak et al.,

1998).

Tight or ‘ideal’ embeddings of knots minimize the knot

length for a given diameter (L=D). A fast and effective

numerical algorithm is the SONO algorithm (Pieranski, 1998).

Here we adopt an extended version of this concept to find

ideal tight conformations of periodic weavings, using a

generalized version of the SONO algorithm to allow for

periodic boundary conditions and minimize L=D within one

unit cell. This adapted algorithm, introduced in the companion

paper (Evans et al., 2013), is explored in detail in Evans (2011)

and we refer to it as PB-SONO throughout this paper.

The ideal embedding of a (periodic) generalized rod

packing is defined to be the embedding that minimizes L=D

within a unit cell of the structure: L=D is a dimensionless

measure of the filament length per unit cell normalized by the

filament diameter. This measure depends on the unit cell and

does not always offer a useful index of comparative tightness.

We therefore also characterize generalized rod packings by

their packing fraction, which is independent of the unit-cell

shape and volume (V): ð�LD2Þ=4V. We note, however, that

this value may not be maximized in an ideal embedding, as we

will see in examples explored later in this paper. In other

words, ideal embeddings are not necessarily the densest.

3. Regular branched-ribbon tilings

The concept of free tilings has been introduced in the

companion paper (Evans et al., 2013). Here too we explore

regular free tilings that are vertex-1, edge-1 and tile-1 transi-

tive. Details of the representation of free tilings by Delaney–

Dress symbols are given in Evans et al. (2013). Here we focus

on regular tilings by branched ribbons whose tile edges form

arrays of infinite, vertex-free lines in H2. Recall that those

arrays are in one-to-one correspondence with the free ribbon

tilings: they are the medial axes of the related ribbon free

tiling, and vice versa. That correspondence simplifies

enumeration of regular branched-ribbon tilings.

research papers
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Consider first the free tilings of H2.

The fundamental regions for free

tilings with threefold, fourfold and

sixfold symmetry are shown in Fig. 1.

Tilings are named according to their

group number in the ?246=� � �
quotient group (Robins et al., 2004;

Evans et al., 2013), appended with

‘RL’, signifying the regular line arrays

characteristic of branched-ribbon

tilings (cf. Evans et al., 2013).

To project to the TPMS, we first

embed these tiles into the ?246 tiling of

H
2. A systematic enumeration of these

embeddings is given in Evans et al.

(2013) and we refer the reader to this

paper for further details. In short, the

embedding can be specified by the

hyperbolic length of one asymmetric

unit of the line (tile boundary) when

embedded in H2. We use that length to

label the tiling patterns. A complete

table of these embedded tilings is given

in Appendix A.

A rich variety of filament arrays is

formed in E3 by projecting the edges of

regular branched-ribbon tilings onto

the P, D and G(yroid) TPMS. These

result in generalized rod packings of

types I, II and III as well as catenated links. A complete

enumeration of the weavings is given in Appendix B, and

crystallographic data for all weavings are given as supple-

mentary material.2

4. Class I weavings

4.1. Invariant rod packings: parallel and layers

There are eight invariant rod packings composed of

parallel rods or layers of rods enumerated in Rosi et al.

(2005); four of these are composed solely of parallel rods

and the other four composed of stacked layers, with parallel

rods in each layer. Four of these rod packings, #1, #2, #3 and

#6, arise via branched-ribbon tilings on the P, D and G

surfaces.

The #1 rod packing (Rosi et al., 2005) consists of a two-

dimensional hexagonal arrangement of parallel rods whose

axes lie at the vertices of the f6; 3g planar tiling and is a

close-packed array of discs. A number of regular branched-

ribbon tilings from the P, D and G surfaces lead to filament

arrays whose average axes form the same pattern as the

filaments of the #1 rod packing. These are the

P122RLðcosh�1
ð3=2ÞÞ, P93RLðcosh�1

ð2
ffiffiffi

2
p
ÞÞ, D122RLðcosh�1

ð5=2ÞÞ

and Gþ122RLðcosh�1
ð3=2ÞÞ patterns. For example, the

Gþ122RLðcosh�1
ð3=2ÞÞ pattern is achiral, with helical filaments,

alternating between left- and right-handed enantiomers, as

shown in Fig. 2. Another variant of this rod packing is the

structure Gþ122RLðcosh�1
ð5=2ÞÞ, which has double helices along

each rod axis.

A two-dimensional square array of parallel rods whose

axes are located at the vertices of a f4; 4g tiling of

E
2 constitutes the #2 rod packing (Rosi et al.,

2005). Structures that are equivalent to this packing

are P123RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ, D123RLðcosh�1

ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ,

D114RLðcosh�1
ð3

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ, Gþ123RLðcosh�1

ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ,

Gþ114RLðcosh�1
ð
ffiffiffi

3
p
ÞÞ and G�114RLðcosh�1

ð3
ffiffiffi

3
p
ÞÞ. Fig. 2 shows

the tetragonal P123RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ pattern (space group

I4=mmm), which consists of undulating rods. Another struc-

ture, P114RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ, is related to the #2 rod packing and

is composed of quadruple helices along the rod axes. Similarly,

the Gþ114RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ structure has triple helices along the

rod axes. Further, tangled versions of the #2 rod packing arise

as structures D114RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ and G�114RLðcosh�1

ð2
ffiffiffi

2
p
ÞÞ,

see x6.

The #3 rod packing consists of parallel rods whose axes are

at vertices of a trigonal (3.6.3.6) tiling. The G93RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ

pattern, shown in Fig. 2, has identical average axes to this rod

packing. The trigonal curvilinear array has undulating fila-

ments (and space group R3c).

Stacked layers of parallel rods where the filament axes of

adjacent layers are orthogonal comprise the #6 rod packing.
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Figure 1
Delaney–Dress symbols for the regular three-, four- and sixfold branched-ribbon tilings with infinite
geodesic boundaries. The tilings are named according to their group number in the ?246=� � �
quotient group (Robins et al., 2004; Evans et al., 2013).

2 Supplementary material for this paper is available from the IUCr electronic
archives (Reference: EO5020). Services for accessing these data are described
at the back of the journal.



Structures related to this packing are D123RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ and

G�114RLðcosh�1
ð
ffiffiffi

3
p
ÞÞ. Fig. 2 shows the former, which has space

group P42=mmc.

[The #4, #5, #7 and #8 rod packings described by O’Keeffe

et al. have not emerged from the current enumeration of

regular H2 patterns. Further examples are sure to emerge on

more complete enumeration of hyperbolic patterns. For

example, a structure related to the #5

rod packing, composed of stacked

layers at half the density of the #6 rod

packing, forms on the D surface by

a branched-ribbon tiling with 2?222
symmetry (group 104). The tiling is

edge-2 transitive and therefore irre-

gular. The structure has undulating

components and space group I41=amd.]

All of the packings with parallel and

layered rods converge to a common

rod packing on tightening using the

PB-SONO algorithm, namely the #4

rod packing (Fig. 3). They are therefore

all equivalent isotopes. Those patterns

with parallel average axes (#1–#4)

tighten by straightening and rearran-

gement of the rods to form the dense

two-dimensional hexagonal conforma-

tion. Similarly, the patterns composed

of stacked layers of parallel rods (#5–

#8) also eventually tighten to form this

ideal conformation by rotation of every

alternate layer to form parallel axes, as

expected. Although various initial

configurations derived from the TPMS

branched-ribbon tilings have distinct

initial unit cells, they further symme-

trize on tightening, forming a common

primitive unit cell containing just

one rod. The packing fraction is

�=ð2
ffiffiffi

3
p
Þ ’ 0:91 regardless of the

choice of unit cell. The L=D measure

depends on the unit cell and for the

smallest unit cell, which contains only

one rod, L=D ¼ 1.

4.2. Invariant rod packings: cubic
examples

Six invariant rod packings of cubic

symmetry are enumerated in Rosi et

al. (2005). Generalized rod packings

related to five of these six arise from

regular branched-ribbon tilings of H2;

the sixth does not have a hyperbolic

antecedent corresponding to the

regular tiling of branched ribbons.

The filament axes of the

Gþ124RLðcosh�1
ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ pattern align

with the �þ rod packing (Fig. 4). The pattern that emerges

from the tiling on the G consists of close to ideal helical fila-

ments, all of equivalent chirality. [The G�124RLðcosh�1
ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ

tiling, which is the G surface fibration of the same tiling by the

second covering map of the G surface (Evans et al., 2013),

gives the �� enantiomer of the chiral rod packing.] The ideal

embedding of this pattern has curvilinear filaments with close

research papers
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Figure 2
Invariant rod packings: parallel and layers. These are shown as tilings of H2, tilings of the TPMS on
which they are built and as filament packings in three-dimensional space. The names of the structures
are given below each image.



to helical trajectories and is formed by tightening both straight

or curved starting filaments. Remarkably, the helices of this

ideal structure decorate a surface parallel to the G minimal

surface such that one channel is slightly deflated and the other

is enlarged, as shown in Fig. 4, indicating the underlying

relevance of the G TPMS to this pattern. The L=D value for

this conformation is 17:91 and the packing fraction is 0:66.

The D124RLðcosh�1
ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ tiling has straight rods, coin-

cident with the �� rod packing, an intergrowth of both chiral

enantiomers of �þ and ��. Its ideal configuration also

consists of straight rods, with L=D ¼ 6 and packing fraction

ð3�Þ=16 ’ 0:59 (Fig. 5).

A Gþ129RLðcosh�1
ð3=2ÞÞ tiling results in quasi-helical fila-

ments winding on the G surface, where all the helices have

equivalent chirality. Filament axes coincide with the �þ rod

packing (Fig. 6). [The G�129RLðcosh�1
ð3=2ÞÞ weaving, obtained

via the second covering map, forms the �� enantiomer.] Both

the Gþ129RLðcosh�1
ð3=2ÞÞ weaving and the related �þ rod

packing relax under tightening to an ideal form with helical

rather than rectilinear rods. This ideal embedding, like that of

the �þ packing, adopts aspects of the G surface. In the case

of the �þ pattern, the close-packed filaments fill one channel

of the G, leaving the complementary volume close to unoc-

cupied, as illustrated in Fig. 6. The L=D value is 30:21 and the

packing fraction is 0:38, making it the least dense ideal

structure of the cubic rod packings.

Weavings from the Gþ123RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ (Fig. 7) and the

D114RLðcosh�1
ð
ffiffiffi

3
p
ÞÞ tilings have slightly undulating filaments,

ambient isotopic to the � rod packing. In this case, the ideal

structure is composed of straight rods. The L=D value of the

ideal embedding is 19:27, with a packing fraction equal to 0:71,

making this the densest of all the ideal cubic rod packings.

The P129RLðcosh�1
ð3=2ÞÞ structure is related to the �þ rod

packing (Fig. 8). The filament geometry inherited from the

surface fibration is slightly helical, with all filaments of

equivalent chirality. The ideal packing also has slightly helical

filaments, which coincide precisely with those inherited from

the P surface tiling. The L=D value for this conformation is

24:06 and the packing fraction is 0:49.

Ideal embeddings of all of the cubic

rod packings retain the cubic symmetry

of their starting configurations and

tightening is not accompanied by a

change of symmetry class. With the

exception of the �þ rod packing, both

ideal and densest embeddings of the

cubic rod packings retain their cubic

symmetry, where any deformation of

the unit cell from its cubic form both

increases L=D and decreases the

packing fraction.
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Figure 3
The ideal configuration for all weavings composed of parallel rods, or
stacked layers of parallel rods. One unit cell is shown, which contains a
single rod and has lattice parameters ð1; 1; 1; �=2; �=2; �=3Þ. The length
of the rod is 1, the diameter is also 1 and the volume of the unit cell is
ffiffiffi

3
p
=2. Thus L=D ¼ 1 and the packing fraction is approximately 0.91.

Figure 4
The Gþ124RLðcosh�1

ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ structure: a helical �þ rod packing. (Top)

Geometry of the decoration, given in H2, on the G surface and in E3.
(Bottom) The ideal configuration in one unit cell, in E3 and on a surface
parallel to the G surface such that one channel has been deflated and the
other enlarged.

Figure 5
D124RLðcosh�1

ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ, equivalent to the �� rod packing. It is shown (from left to right) in H2, on

the D surface, in E3 and as an ideal configuration within one unit cell.

Figure 6
The Gþ129RLðcosh�1

ð3=2ÞÞ structure: a helical �þ. (Top) The surface
structure shown in H2, on the G surface and in E3. (Bottom) The ideal
structure, shown in one unit cell, filling one channel of the G minimal
surface and in E3.



When different lattice parameters are imposed for the �þ

[Gþ123RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ] pattern, and each of these structures

then tightened given this input, we see an interesting result.

Increasing the c axis (elongating the cube cell to be of size

1� 1� c) results in ideal embeddings with a higher L=D

value and a higher packing fraction, forming denser packings,

that are, however, looser than the cubic case. These denser,

looser embeddings have undulating filaments, with ever larger

curvature variations as c is increased.

These regular tilings produce generalized rod packings

whose ideal forms coincide with five of the six invariant cubic

rod packings detailed in O’Keeffe et al. (2001). The sixth of

these rod packings is the �� packing, which is an interwoven

variant containing a �þ and a �� (an enantiomeric pair). It

does not emerge from regular branched-ribbon tilings on the

cubic TPMS. (It is probable, however, that this structure is an

irregular case, related to a lower-symmetry orbifold than those

of regular free tilings.) It is interesting to note that the ideal

embedding of the �� rod packing is exactly equivalent to

the interweaving of the ideal Gþ129RLðcosh�1
ð3=2ÞÞ and

G�129RLðcosh�1
ð3=2ÞÞ structures (related to the �þ and ��

packings). Remarkably, the complementary volume to the

ideal Gþ129RLðcosh�1
ð3=2ÞÞ structure [or equivalently the

G�129RLðcosh�1
ð3=2ÞÞ structure] is just suitable to accommodate

the opposite enantiomer, also in its ideal form. In other words,

the ideal Gþ129RLðcosh�1
ð3=2ÞÞ structure fills one channel of the

G minimal surface and the second ideal

enantiomer fills the other channel. The

correspondence between the TPMS

and ideal embeddings of these cubic

rod packings is curious, given that tight

embeddings are not a priori related to

two-dimensional hyperbolic patterns.

Among all cases, only the ideal

embedding of the � rod packing does

not relate readily to the geometry of the

P, D or G morphologies.

4.3. Invariant rod packings: non-cubic examples

The enumeration of weavings from regular branched-

ribbon tilings also results in five additional tetragonal and

trigonal patterns, whose filament axes coincide with recti-

linear, invariant rod packings not enumerated in O’Keeffe et

al. (2001) and Rosi et al. (2005).

The P114RLðcosh�1
ð
ffiffiffi

3
p
ÞÞ structure is shown in Fig. 9. The

filament geometry inherited from the surface fibration consists

of a tetragonal array of straight lines, where the four filaments

within a unit cell are described by the trajectories fu; 0; 1
2þ ug,

fu; 1
2 ;�ug, f12 ; u; 1

2þ ug and f0; u;�ug within the space group

P4=nnc. In the ideal conformation of this rod packing the

filaments deviate slightly from their rod axes, forming undu-

lating trajectories. The minimum L=D value, 15:95, occurs with

lattice parameters (a ¼ b ¼ 1, c ¼ 0:8, � ¼ � ¼ � ¼ �=2),

where the packing fraction is 0.553. This tightest unit cell does

not give a densest packing: the density increases with the

length of the c axis, at the expense of L=D, similar to the �
structure.

The Gþ114RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ weaving, shown in Fig. 10, has

tetragonal symmetry (I41=acd). The structure contains slightly

undulating rods, with four distinct axes within a unit cell,

described by the vectors fu; u;�3ug, f�u; u; 1
2þ 3ug,

f12þ u; u; 1
2þ 3ug and f12� u; u; 3ug. The filaments can be
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Figure 7
The Gþ123RLðcosh�1

ð
ffiffiffi

2
p
ÞÞ structure, equivalent to the � rod packing. The structure is shown (from left

to right) in H2, on the G surface, in E3 and as an ideal structure in one unit cell.

Figure 8
The P129RLðcosh�1

ð3=2ÞÞ structure, related to the �þ rod packing. (Top)
The surface fibration, shown in H2, on the surface and in E3. (Bottom)
The ideal configuration, shown in one unit cell and in E3. The ideal
structure is very close to the surface fibration.

Figure 9
The P114RLðcosh�1

ð
ffiffiffi

3
p
ÞÞ structure, a tetragonal rod packing composed of

straight rods. (Top) The surface structure in H2, on the surface and in E3.
(Bottom, left) A unit cell of the ideal embedding of this packing and
(right) larger volume of the ideal embedding, drawn with a deflated
filament diameter to illustrate the undulating geometry of the rods.



straightened to coincide with their axes without changing

ambient isotopy, so the G weaving is an equivalent isotope to

this new tetragonal rectilinear rod packing. Another distinct

class I weaving, formed from the D114RLðcosh�1
ð3

ffiffiffi

3
p
ÞÞ tiling,

has filaments tracing the same rod trajectories; thus these

weavings are equivalent isotopes.

The filaments of the P114RLðcosh�1
ð5

ffiffiffi

3
p
ÞÞ weaving can also

be rectified to coincide with their axes to give a tetragonal rod

packing (P4=nnc). The construction of this weaving is shown

in Fig. 11. The weaving is composed of slightly undulating

filaments, where the four distinct rod positions within a unit

cube cell are described by the vectors fu; 0; 3ug, fu; 1
2 ;

1
2� 3ug,

f0; u; 1
2� 3ug and f12 ; u; 3ug.

Similarly, the filaments of the Gþ93RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ weaving

can be rectified to give a rod packing with trigonal symmetry

R3c (Fig. 12). The three distinct rod positions, described in

the G surface cubic unit cell, are given by the vectors

fu; 1
2þ 3u; 1

2þ ug, f3u; u; 1
2þ ug and fu; 1

2þ u; 3ug.

The structure G�93RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ (Fig. 13) has filament axes

forming a rod packing of trigonal symmetry R3c. The

G�93RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ weaving is also an equivalent isotope. The

alignment of the rods in a cube cell is described by the

vectors f�u; u; 1
2� ug, fu; 1

2þ u; 1
2� ug and f12� u; u; 1

2þ ug

(see Fig. 13). Further, the trigonal rod packing defined by

the G�93RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ weaving has been observed as the

arrangement of a self-assembled chemical structure in

Carlucci et al. (1999). When viewed along a rod direction, one

can see that this weaving is a deformation of the �� cubic rod

packing and is thus an isotope of ��. Given this, the ideal

configuration of the weaving is thus precisely ��, for which

L=D ¼ 6 and the packing fraction 0.59.

5. Class II weavings: intersecting filament axes

Our enumeration also gives novel class II weavings char-

acterized by intersecting filament axes. Recall that these

intersecting filaments form a net whose vertices are the

points common to more than one filament. Clearly, ideal

embeddings of these weavings necessarily have curvilinear

embeddings.

The regular branched-ribbon tiling P118RLðcosh�1
ð
ffiffiffi

6
p
ÞÞ (Fig.

14) forms a weaving with space group P432 on the P surface.

Rectifying the filaments of this weaving along their axes

causes the filaments to intersect only when fully straightened.

The six distinct filament axes in a cubic unit cell are

fu; 1
2� u; 0g, f0; u; 1

2� ug and fu; 0; 1
2� ug. If the intersection

points of the filaments are changed to be vertices, the filaments

form a known three-dimensional net, labelled reo according to

the three-letter schema developed by O’Keeffe et al. (2008),

with 1-transitive vertices and edges. This net is itself a

conventional (i.e. not free) tiling of the P (or D) surfaces,

listed as sqc877 in the Epinet database (see http://epinet.

anu.edu.au/sqc877).

The D118RLðcosh�1
ð
ffiffiffi

6
p
ÞÞ weaving has space group F4132 on

the surface (Fig. 15). The 12 distinct filament axes in a unit cell

are fu; u; 1
8g, fu;

1
2þ u; 5

8g, fu;
1
8 ; ug, fu; 5

8 ;
1
2þ ug, f18 ; u; ug,

f58 ; u; 1
2þ ug, f78 ; u;�ug, f38 ; u; 1

2� ug, fu; 7
8 ;�ug, fu; 3

8 ;
1
2� ug,

fu;�u; 7
8g and fu; 1

2� u; 3
8g. Rectification of this weaving results

in intersecting rods, giving the crs (cristobalite) net (also

known to Epinet as sqc889; see http://epinet.anu.edu.au/

sqc889), which has 1-transitive vertices and edges (O’Keeffe et

al., 2008). The ideal (tight) embedding of this weaving adopts a

very low density, with L=D ¼ 145:28 and a packing fraction of

0.31.

The Gþ118RLðcosh�1
ð
ffiffiffi

6
p
ÞÞ weaving (Fig. 16) is a line pattern

on the gyroid with space group I4132. The 12 distinct axes of

the filaments in a unit cell are fu; 1
4� u; 3

8g, fu;
1
4� u; 7

8g,

f38 ;
1
4� u; ug, f78 ;

1
4� u; ug, fu; 1

4þ u; 1
8g, fu; 1

4þ u; 5
8g,

fu; 3
8 ;

1
4� ug, fu; 7

8 ;
1
4� ug, f18 ;

3
4þ u; ug, f58 ;

3
4þ u; ug,

fu; 1
8 ;

3
4þ ug and fu; 5

8 ;
3
4þ ug. These axes form the chiral nfa

net (O’Keeffe et al., 2008), with 1-transitive vertices and

2-transitive edges. The two distinct edges of the net result from

the single asymmetric edge of the weavings because the

intersection point of the filaments cuts the asymmetric unit

of the filament in half: the two distinct edges of the nfa

network together form a continuous straight line. This

weaving also has very low density in its

ideal conformation, with L=D ¼ 123:84

and a packing fraction of 0.31. The

difference between the weaving that

emerges from the TPMS and the ideal

embedding is small.

The P114RLðcosh�1
ð3

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ

weaving in Fig. 17 has four distinct

filament axes, with vectors fu; u;�ug,

fu; 1
2� u; 1

2þ ug, fu; u; 1
2þ ug and

fu; 1
2� u;�ug in a unit cell. It has space

group P4=nnc, and the axes of these

filaments form edges of the regular bcu
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Figure 11
The P114RLðcosh�1

ð5
ffiffiffi

3
p
ÞÞ weaving, whose filament axes give a rod packing of tetragonal symmetry

(P4=nnc). The weaving is shown from left to right as a free tiling of H2, on one unit cell of the P
surface, in E3 and where the undulating filaments have been straightened to the associated rod
packing.

Figure 10
The Gþ114RLðcosh�1

ð2
ffiffiffi

2
p
ÞÞ filamentous array, a tetragonal rod packing

composed of slightly undulating filaments. This weaving is shown (left) in
H

2, (centre) on one unit cell of the G surface and (right) in E3.



net (O’Keeffe et al., 2008), known to Epinet as sqc3 (see http://

epinet.anu.edu.au/sqc3).

6. Class III weavings: tangled examples

Recall that class III weavings have sufficiently interwoven

filaments to impede each other from rectification along

their filament axes without changing their entanglement.

These examples are therefore ‘tangled weavings’, since the

related rod packing whose (straight) rods lie along filament

axes is a distinct isotope. Like class II weavings, ideal

embeddings of tangled weavings necessarily contain curvi-

linear rods.

Fig. 18 shows the D114RLðcosh�1
ð3

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ tiling and

resulting weaving. This is a tangled variant of the parallel

square rod packing (#2 rod packing), or in fact any of its

equivalent ‘canonical’ isotopes, which contain all of the

parallel and layered invariant rod packings.

The tangled weaving Gþ118RLðcosh�1
ð9=2ÞÞ is shown in Fig.

19. Rectification of the filaments along their axes results in the

� rod packing with three filaments tracing along each rod. The

ideal form of the tangled weaving has L=D ¼ 220:26 and a

packing fraction equal to 0.40.

The G�118RLðcosh�1
ð9=2ÞÞ weaving, shown in Fig. 20, is a

tangled version of the �þ rod packing, and hence also the

Gþ129RLðcosh�1
ð3=2ÞÞ weaving (cf. Fig. 6). The ideal conforma-

tion of the tangled weaving has L=D ¼ 70:67 and a packing

fraction equal to 0.20. Its ideal form is the least dense of all

weavings constructed so far.

7. Links: looped filaments

As noted above, the filament trajec-

tories of the TPMS fibration occasion-

ally form closed loops in E3 rather than

infinite lines, resulting in ‘links’ with an

infinite number of components. Many

of the examples that emerge from the

most symmetric free tilings consist of

arrays of disjoint loops, with no

entanglement between distinct loops.

However, in the case of the tiling

P118RLðcosh�1
ð7

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ, distinct loops

are catenated (Fig. 21). Each loop of

the structure catenates 16 of its neigh-

bouring loops, where each loop pair

forms a Hopf link (Cromwell, 2004),

resulting in a three-dimensional chain-

mail. Within this structure, sheets of

doubly periodic chainmail orient along

three orthogonal h100i directions in E3,

such that sheets catenate with those of

distinct orientations but not with

parallel sheets.

The behaviour of this chainmail on

tightening using the PB-SONO algo-

rithm is revealing. The link geometry
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Figure 13
The G�93RLðcosh�1

ð
ffiffiffi

2
p
ÞÞ structure, shown in H2, on the surface and in E3, is related to a rod packing

with trigonal symmetry. The far right image shows the structure when viewed along a rod axis where
it can be seen that this is a deformation of the �� rod packing.

Figure 14
The P118RLðcosh�1

ð
ffiffiffi

6
p
ÞÞ pattern. (Left to right) The free tiling in H2 and on the P surface, the

resulting weaving in E3 and the reo net, whose edges coincide with the filament axes of this weaving.

Figure 15
The D118RLðcosh�1

ð
ffiffiffi

6
p
ÞÞ structure is a weaving with intersecting filament

axes. (Top) The free tiling inH2 and on the surface, and the weaving in E3.
(Bottom left) The filament axes intersect to form a crs net. (Bottom
centre/right) The ideal embedding of this weaving.

Figure 12
The Gþ93RLðcosh�1

ð2
ffiffiffi

2
p
ÞÞ structure, shown in H2, on the G surface and in

E
3, is related to a trigonal rod packing.



inherited from the TPMS tiling has fourfold axes that are lost

on tightening. That behaviour is analogous to the ideal

embedding of four interwoven helices, where one of the

helices straightens along its filament axis and the other three

wind around this straight filament, forming a triple helix with a

threefold axis. This feature is reminiscent of the ideal config-

urations of some complex torus knots and links that lose

symmetry on tightening (Pieranski, 1998).

8. Closing remarks

The wealth of examples derived in this paper, that emerge

from the simplest most symmetric line patterns on the simplest

TPMS, reveal the efficacy of the construction technique. The

process relies on enumeration of free tilings ofH2 and we have

explored some regular examples in detail. Most of the

rod packings described previously from Euclidean crystal-

lographic analysis emerge ab initio in this way. A number of

other examples adopt a variety of configurations, leading to

our classification of these generic weavings into three possible

classes, dependent on their entanglement characteristics. This

approach allows us to distinguish between ‘tangled’ and

‘untangled’ weavings, by analogy with knots and tangled nets.

Most significantly, this enumeration technique allows a natural

extension of the useful concept of rod packings to crystal-

lographic arrays of more complex one-dimensional forms.

The generalized SONO algorithm used here generally

results in a useful quasi-canonical ideal embedding for these

weavings, characteristic of their entanglement. It is note-

worthy that ideal embeddings of all of the three-dimensional

weavings, that are not made up of parallel layers, have ideal

embeddings that are at least as symmetric as the original

weavings. (In contrast, this does not hold for many of the

layered rod packings, nor for the three-dimensional chainmail

pattern.) A general trend, common to knots, is a rough

correspondence between the magnitude of L=D and the

degree of entanglement of the weaving. The approach there-

fore holds some promise for exploration

of other tangled patterns also, such as

self-knotted nets and multiple inter-

woven nets. The latter example is

explored in more detail in a companion

publication (Evans et al., 2013).

We note that our projection tech-

nique from two-dimensional hyperbolic

space (H2) to three-dimensional Eucli-

dean space (E3) occasionally affords a

useful embedding for these weavings

and little ‘annealing’ in E3 is required to

form the ideal embedding. In other
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Figure 17
The P114RLðcosh�1

ð3
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ weaving. (Left to right) The free tiling in H2, on one unit cell of the P

surface and the resulting weaving in E3. (Right) The bcu net, whose edges coincide with the axes of
the filaments in this weaving.

Figure 16
The weaving Gþ118RLðcosh�1

ð
ffiffiffi

6
p
ÞÞ. (Top) The regular free tiling in H2 and

on one unit cell of the G surface, and the resulting weaving in E3. (Bottom
left) The chiral nfa net that results from the intersecting filament axes.
(Bottom centre, right) The ideal embedding of the weaving.

Figure 18
The D114RLðcosh�1

ð3
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ structure, shown in H2, on the D surface

and in E3; a tangled variant of the #2 rod packing.

Figure 19
The Gþ118RLðcosh�1

ð9=2ÞÞ structure is a tangled version of a � rod packing
composed of triple-helical rods. (Top) The regular free tiling inH2 and on
one unit cell of the G surface, and the resulting weaving in E3. (Bottom)
The ideal embedding of this weaving.



words, the ideal geometry of the weaving is reminiscent of the

TPMS fibration geometry. Certainly, this curvilinear approach

is a useful one to generate a variety of weavings, of which rod

packings are a subset, since the ideal conformation of some

rod packings contains helical filaments rather than straight

components.

The paper seeks to enumerate simplest generalized rod

packings from the perspective of pure geometry, rather than

materials science. However, it is clear that some of the

weavings explored here arise in the description of chemical

frameworks. In particular, the invariant cubic rod packings are

widely identified in covalent inorganic crystal structures and

other chemical frameworks (O’Keeffe & Hyde, 1996). Many

of the invariant cubic and non-cubic rod packings are also

readily synthesized as metal–organic frameworks, a summary

of which may be found in Rosi et al. (2005). Further, the

G�93RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ weaving, shown in Fig. 13, has been

observed in the solid state (Carlucci et al., 1999).

These weavings are all constructed as fibrations of surfaces

observed regularly as mesoscale cubic membranes. It has been

suggested that three-dimensional weavings of structural

proteins may form in vivo on the cubic membrane, in much the

same way as these weavings emerge as tilings of the TPMS.

One such example [the Gþ129Cðcosh�1
ð3=2ÞÞ weaving] was

proposed to describe the organization of keratin in the

corneocyte of the outer layer of mammalian skin, possibly

templated on a G-shaped membrane (Evans & Hyde, 2011).

That weaving has remarkable ‘anomalous dilatancy’, where

straightening of the quasi-helical filaments results in coop-

erative expansion of the weaving, rather than collapse. This

feature is somewhat reminiscent of auxetic (negative Poisson

ratio) materials and is characteristic of the (class I)

Gþ129Cðcosh�1
ð3=2ÞÞ weaving. It is worth noting that many of

the structures from the G surface, and also a few from the P

surface, share this property. This construction method then

may also be of significance for the design of materials with

anomalous expansion characteristics (e.g. negative thermal

expansion materials, auxetics). This connection between

geometry and topology and mechanical behaviour is curious

and offers some relevance to the geometric approach intro-

duced here.

APPENDIX A
Free tilings of the hyperbolic plane

The free tilings of H2 with infinite geodesic boundaries are

given in Fig. 22. In the companion paper, we detailed free

tilings composed of tree-like boundary components, which are

the medial axes of the tilings shown in Fig. 22, and vice versa.

The edge lengths of each pair of structures differ by virtue of

their independent construction; however, we wish to highlight

the relation between these structures in the following table.

APPENDIX B
Catalogue of resulting structures

Tables 1, 2 and 3 show the three-dimensional filament arrays

formed from regular branched-ribbon tilings of H2 projected
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Figure 20
The G�118RLðcosh�1

ð9=2ÞÞ structure is a tangled �þ rod packing. (Top) The
surface fibration is shown in H2, on one unit cell of the G surface and in
E

3. (Bottom) The ideal structure.

Figure 21
The regular branched-ribbon tiling P118RLðcosh�1

ð7
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ forms

complex catenated loops, giving two-dimensional catenated sheets, that
catenate orthogonal sheets, giving a three-dimensional chainmail pattern.
(Top) The free tiling in H2, on the surface and the resulting chanmail in
E

3. (Bottom left) Four links within a single layer of the chainmail.
(Bottom centre/right) The ideal embedding.

Geodesic packing Tree packing (Evans et al., 2013)

?246124RLðcosh�1
ð
ffiffiffi
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ffiffiffi

2
p
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2
p
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ffiffiffi

2
p
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p
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2
p
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2
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Figure 22
Free tilings of the hyperbolic plane, with infinite geodesic tile boundaries. These tilings are named below each image, giving details of the underlying
tiling (?246), the Delaney–Dress tile topology (see Fig. 1), RL to signify regular line packings, and the edge length of one asymmetric unit of the lines.



onto the P, D and G(yroid) TPMSs. These weavings are

labelled by their parent free tiling (cf. Appendix A), plus the

surface that the tiling decorates. Owing to the pair of

embeddings that are possible for chiral patterns on the gyroid

(Robins et al., 2005), G tilings are also labelled with þ or �

superscripts to distinguish these cases. For example, the

hyperbolic tiling �246118RLðcosh�1
ð
ffiffiffi

6
p
ÞÞ is the embedding of

the free tiling with symmetry 2223 (group 118) into the ?246
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Table 1
Weavings from ?2223, 2?23 and 2223 hyperbolic symmetry.

Structure Packing
Weaving
space group L=D

Packing
fraction Ideal unit cell Figure

P124RLðcosh�1
ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ Loops Pm3m

P129RLðcosh�1
ð3=2ÞÞ Helical �þ I432 24.06 0.49 ð1; 1; 1; �=2; �=2; �=2Þ 8

P118RLðcosh�1
ð
ffiffiffi

6
p
ÞÞ Intersect P432 14

P118RLðcosh�1
ð9=2ÞÞ Tangled �þ P432

P118RLðcosh�1
ð7

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ Catenated loops P432 85.62 0.35 ð1; 1; 1; �=2; �=2; �=2Þ 21

P118RLðcosh�1
ð33=2ÞÞ Tangled �þ P432

D124RLðcosh�1
ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ �� P4232 6.00 0.59 ð1; 1; 1; �=2; �=2; �=2Þ 5

D129RLðcosh�1
ð3=2ÞÞ Loops Fd3m

D118RLðcosh�1
ð
ffiffiffi

6
p
ÞÞ Intersect F4132 145.28 0.31 ð1; 1; 1; �=2; �=2; �=2Þ 15

D118RLðcosh�1
ð9=2ÞÞ Tangled �þ F4132

D118RLðcosh�1
ð7

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ ��: woven F4132

D118RLðcosh�1
ð33=2ÞÞ Tangled �þ F4132

G
þ=�
124RLðcosh�1

ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ Helical �þ=� I4132 17.91 0.66 ð1; 1; 1; �=2; �=2; �=2Þ 4

G
þ=�
129RLðcosh�1

ð3=2ÞÞ Helical �þ=� I4132 30.21 0.38 ð1; 1; 1; �=2; �=2; �=2Þ 6

Gþ118RLðcosh�1
ð
ffiffiffi

6
p
ÞÞ Intersect I4132 123.84 0.31 ð1; 1; 1; �=2; �=2; �=2Þ 16

G�118RLðcosh�1
ð
ffiffiffi

6
p
ÞÞ Loops I4132

Gþ118RLðcosh�1
ð9=2ÞÞ Tangled 3� � I4132 220.26 0.40 ð1; 1; 1; �=2; �=2; �=2Þ 19

G�118RLðcosh�1
ð9=2ÞÞ Tangled �þ I4132 70.67 0.20 ð1; 1; 1; �=2; �=2; �=2Þ 20

Gþ118RLðcosh�1
ð7

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ Tangled �þ I4132

G�118RLðcosh�1
ð7

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ Tangled �þ I4132

Gþ118RLðcosh�1
ð33=2ÞÞ Tangled 3� � I4132

G�118RLðcosh�1
ð33=2ÞÞ Tangled �þ I4132

Table 2
Weavings from ?2224 and 2224 hyperbolic symmetry.

Structure Packing
Surface
space group L=D

Packing
fraction Ideal unit cell Figures

P123RLðcosh�1
ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ Loops I4=mmm

P123RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ #2 I4=mmm 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ 2 and 3

P114RLðcosh�1
ð
ffiffiffi

3
p
ÞÞ Rod (tetr.) P4=nnc 15.95 0.553 ð1; 1; 0:8; �=2; �=2; �=2Þ 9

P114RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ Intersect P4=nnc 17

P114RLðcosh�1
ð3

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ Helical 4� #2 P4=nnc

P114RLðcosh�1
ð3

ffiffiffi

3
p
ÞÞ Tangled (tetr.) P4=nnc

P114RLðcosh�1
ð5

ffiffiffi

3
p
ÞÞ Rod (tetr.) P4=nnc 11

D123RLðcosh�1
ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ #2 P42=nnm 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ 2 and 3

D123RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ #6 P42=nnm 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ

D114RLðcosh�1
ð
ffiffiffi

3
p
ÞÞ � I41=acd 19.27 0.71 ð1; 1; 1; �=2; �=2; �=2Þ

D114RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ #2 I41=acd 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ

D114RLðcosh�1
ð3

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ Tangled #2 I41=acd 18

D114RLðcosh�1
ð3

ffiffiffi

3
p
ÞÞ Rod (tetr.) I41=acd

D114RLðcosh�1
ð5

ffiffiffi

3
p
ÞÞ Tangled � I41=acd

Gþ=�123RLðcosh�1
ð
ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ #2 I41=acd 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ

G
þ=�
123RLðcosh�1

ð
ffiffiffi

2
p
ÞÞ � I41=acd 19.27 0.71 ð1; 1; 1; �=2; �=2; �=2Þ 7

Gþ114RLðcosh�1
ð
ffiffiffi

3
p
ÞÞ #2 I41=acd 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ

G�114RLðcosh�1
ð
ffiffiffi

3
p
ÞÞ #6 I41=acd 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ

Gþ114RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ Rod (tetr.) I41=acd 10

G�114RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ � I41=acd 19.27 0.71 ð1; 1; 1; �=2; �=2; �=2Þ

Gþ114RLðcosh�1
ð3

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ Helical 3� #2 I41=acd

G�114RLðcosh�1
ð3

ffiffiffi

3
p
=
ffiffiffi

2
p
ÞÞ Tangled #2 I41=acd

Gþ114RLðcosh�1
ð3

ffiffiffi

3
p
ÞÞ Intersect I41=acd

G�114RLðcosh�1
ð3

ffiffiffi

3
p
ÞÞ #2 I41=acd 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ

Gþ114RLðcosh�1
ð5

ffiffiffi

3
p
ÞÞ Intersect I41=acd

G�114RLðcosh�1
ð5

ffiffiffi

3
p
ÞÞ Intersect I41=acd



tiling of H2, embedded with edge length cosh�1
ð
ffiffiffi

6
p
Þ. The

structure Gþ118RLðcosh�1
ð
ffiffiffi

6
p
ÞÞ is the fibration of the hyperbolic

tiling �246118RLðcosh�1
ð
ffiffiffi

6
p
ÞÞ over the G surface by one

covering map. The space group of the weaving, whose

embedding comes from the TPMS, is listed.

We thank Stuart Ramsden for helpful discussions on many

aspects of this work. MEE thanks the Humboldt Foundation

for generous support.
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Table 3
Weavings from 2?26 and 2226 hyperbolic symmetry.

Structure Packing
Surface
space group L=D

Packing
fraction Ideal unit cell Figures

P122RLðcosh�1
ð3=2ÞÞ #1 R3m 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ

P122RLðcosh�1
ð5=2ÞÞ Loops R3m

P93RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ �� R3c

P93RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ #1 R3c 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ

D122RLðcosh�1
ð3=2ÞÞ Loops R3m

D122RLðcosh�1
ð5=2ÞÞ #1 R3m 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ

D93RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ Rod (tri.) R3c

D93RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ Intersect R3c

Gþ122RLðcosh�1
ð3=2ÞÞ #1 R3c 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ 2 and 3

Gþ122RLðcosh�1
ð5=2ÞÞ Helical 2� #1 R3c

Gþ93RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ #3 R3c 1 0.90 ð1; 1; 1; �=2; �=2; �=3Þ 2 and 3

G�93RLðcosh�1
ð
ffiffiffi

2
p
ÞÞ Rod (tri.) R3c 6 0.59 ð1; 1; 1; �=2; �=2; �=2Þ 13

Gþ93RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ Rod (tri.) R3c 12

G�93RLðcosh�1
ð2

ffiffiffi

2
p
ÞÞ Rod (tri.) R3c
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